Polynomials vanishing on grids: The Elekes-Rónyai problem revisited (1401.7419v2)
Abstract: In this paper we characterize real bivariate polynomials which have a small range over large Cartesian products. We show that for every constant-degree bivariate real polynomial $f$, either $|f(A,B)|=\Omega(n{4/3})$, for every pair of finite sets $A,B\subset{\mathbb R}$, with $|A|=|B|=n$ (where the constant of proportionality depends on ${\rm deg} f$), or else $f$ must be of one of the special forms $f(u,v)=h(\varphi(u)+\psi(v))$, or $f(u,v)=h(\varphi(u)\cdot\psi(v))$, for some univariate polynomials $\varphi,\psi,h$ over ${\mathbb R}$. This significantly improves a result of Elekes and R\'onyai (2000). Our results are cast in a more general form, in which we give an upper bound for the number of zeros of $z=f(x,y)$ on a triple Cartesian product $A\times B\times C$, when the sizes $|A|$, $|B|$, $|C|$ need not be the same; the upper bound is $O(n{11/6})$ when $|A|=|B|=|C|=n$, where the constant of proportionality depends on ${\rm deg} f$, unless $f$ has one of the aforementioned special forms. This result provides a unified tool for improving bounds in various Erd\H os-type problems in geometry and additive combinatorics. Several applications of our results to problems of these kinds are presented. For example, we show that the number of distinct distances between $n$ points lying on a constant-degree parametric algebraic curve which does not contain a line, in any dimension, is $\Omega(n{4/3})$, extending the result of Pach and de Zeeuw (2013) and improving the bound of Charalambides (2012), for the special case where the curve under consideration has a polynomial parameterization. We also derive improved lower bounds for several variants of the sum-product problem in additive combinatorics.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.