Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Detecting Cohesive and 2-mode Communities in Directed and Undirected Networks (1401.7375v1)

Published 29 Jan 2014 in cs.SI and physics.soc-ph

Abstract: Networks are a general language for representing relational information among objects. An effective way to model, reason about, and summarize networks, is to discover sets of nodes with common connectivity patterns. Such sets are commonly referred to as network communities. Research on network community detection has predominantly focused on identifying communities of densely connected nodes in undirected networks. In this paper we develop a novel overlapping community detection method that scales to networks of millions of nodes and edges and advances research along two dimensions: the connectivity structure of communities, and the use of edge directedness for community detection. First, we extend traditional definitions of network communities by building on the observation that nodes can be densely interlinked in two different ways: In cohesive communities nodes link to each other, while in 2-mode communities nodes link in a bipartite fashion, where links predominate between the two partitions rather than inside them. Our method successfully detects both 2-mode as well as cohesive communities, that may also overlap or be hierarchically nested. Second, while most existing community detection methods treat directed edges as though they were undirected, our method accounts for edge directions and is able to identify novel and meaningful community structures in both directed and undirected networks, using data from social, biological, and ecological domains.

Citations (78)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.