Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Methods for Collision-Free Navigation of Multiple Mobile Robots in Unknown Cluttered Environments (1401.6775v1)

Published 27 Jan 2014 in math.OC and cs.RO

Abstract: Navigation and guidance of autonomous vehicles is a fundamental problem in robotics, which has attracted intensive research in recent decades. This report is mainly concerned with provable collision avoidance of multiple autonomous vehicles operating in unknown cluttered environments, using reactive decentralized navigation laws, where obstacle information is supplied by some sensor system. Recently, robust and decentralized variants of model predictive control based navigation systems have been applied to vehicle navigation problems. Properties such as provable collision avoidance under disturbance and provable convergence to a target have been shown; however these often require significant computational and communicative capabilities, and don't consider sensor constraints, making real time use somewhat difficult. There also seems to be opportunity to develop a better trade-off between tractability, optimality, and robustness. The main contributions of this work are as follows; firstly, the integration of the robust model predictive control concept with reactive navigation strategies based on local path planning, which is applied to both holonomic and unicycle vehicle models subjected to acceleration bounds and disturbance; secondly, the extension of model predictive control type methods to situations where the information about the obstacle is limited to a discrete ray-based sensor model, for which provably safe, convergent boundary following can be shown; and thirdly the development of novel constraints allowing decentralized coordination of multiple vehicles using a robust model predictive control type approach, where a single communication exchange is used per control update, vehicles are allowed to perform planning simultaneously, and coherency objectives are avoided.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.