Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Weakly Submodular Functions (1401.6697v5)

Published 26 Jan 2014 in cs.DM, cs.DS, and math.CO

Abstract: Submodular functions are well-studied in combinatorial optimization, game theory and economics. The natural diminishing returns property makes them suitable for many applications. We study an extension of monotone submodular functions, which we call {\em weakly submodular functions}. Our extension includes some (mildly) supermodular functions. We show that several natural functions belong to this class and relate our class to some other recent submodular function extensions. We consider the optimization problem of maximizing a weakly submodular function subject to uniform and general matroid constraints. For a uniform matroid constraint, the "standard greedy algorithm" achieves a constant approximation ratio where the constant (experimentally) converges to 5.95 as the cardinality constraint increases. For a general matroid constraint, a simple local search algorithm achieves a constant approximation ratio where the constant (analytically) converges to 10.22 as the rank of the matroid increases.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.