Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BigOP: Generating Comprehensive Big Data Workloads as a Benchmarking Framework (1401.6628v2)

Published 26 Jan 2014 in cs.DC, cs.DB, and cs.PF

Abstract: Big Data is considered proprietary asset of companies, organizations, and even nations. Turning big data into real treasure requires the support of big data systems. A variety of commercial and open source products have been unleashed for big data storage and processing. While big data users are facing the choice of which system best suits their needs, big data system developers are facing the question of how to evaluate their systems with regard to general big data processing needs. System benchmarking is the classic way of meeting the above demands. However, existent big data benchmarks either fail to represent the variety of big data processing requirements, or target only one specific platform, e.g. Hadoop. In this paper, with our industrial partners, we present BigOP, an end-to-end system benchmarking framework, featuring the abstraction of representative Operation sets, workload Patterns, and prescribed tests. BigOP is part of an open-source big data benchmarking project, BigDataBench. BigOP's abstraction model not only guides the development of BigDataBench, but also enables automatic generation of tests with comprehensive workloads. We illustrate the feasibility of BigOP by implementing an automatic test generation tool and benchmarking against three widely used big data processing systems, i.e. Hadoop, Spark and MySQL Cluster. Three tests targeting three different application scenarios are prescribed. The tests involve relational data, text data and graph data, as well as all operations and workload patterns. We report results following test specifications.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.