Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Simple Error Bounds for Regularized Noisy Linear Inverse Problems (1401.6578v1)

Published 25 Jan 2014 in math.OC, cs.IT, math.IT, math.ST, and stat.TH

Abstract: Consider estimating a structured signal $\mathbf{x}0$ from linear, underdetermined and noisy measurements $\mathbf{y}=\mathbf{A}\mathbf{x}_0+\mathbf{z}$, via solving a variant of the lasso algorithm: $\hat{\mathbf{x}}=\arg\min\mathbf{x}{ |\mathbf{y}-\mathbf{A}\mathbf{x}|_2+\lambda f(\mathbf{x})}$. Here, $f$ is a convex function aiming to promote the structure of $\mathbf{x}_0$, say $\ell_1$-norm to promote sparsity or nuclear norm to promote low-rankness. We assume that the entries of $\mathbf{A}$ are independent and normally distributed and make no assumptions on the noise vector $\mathbf{z}$, other than it being independent of $\mathbf{A}$. Under this generic setup, we derive a general, non-asymptotic and rather tight upper bound on the $\ell_2$-norm of the estimation error $|\hat{\mathbf{x}}-\mathbf{x}_0|_2$. Our bound is geometric in nature and obeys a simple formula; the roles of $\lambda$, $f$ and $\mathbf{x}_0$ are all captured by a single summary parameter $\delta(\lambda\partial((f(\mathbf{x}_0)))$, termed the Gaussian squared distance to the scaled subdifferential. We connect our result to the literature and verify its validity through simulations.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.