Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Remote Vector Gaussian Source Coding with Covariance Distortion Constraints (1401.6136v2)

Published 23 Jan 2014 in cs.IT and math.IT

Abstract: In this paper, we consider a distributed remote source coding problem, where a sequence of observations of source vectors is available at the encoder. The problem is to specify the optimal rate for encoding the observations subject to a covariance matrix distortion constraint and in the presence of side information at the decoder. For this problem, we derive lower and upper bounds on the rate-distortion function (RDF) for the Gaussian case, which in general do not coincide. We then provide some cases, where the RDF can be derived exactly. We also show that previous results on specific instances of this problem can be generalized using our results. We finally show that if the distortion measure is the mean squared error, or if it is replaced by a certain mutual information constraint, the optimal rate can be derived from our main result.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.