Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Study of Neural Network Algorithm for Straight-Line Drawings of Planar Graphs (1401.5330v1)

Published 21 Jan 2014 in cs.CG and cs.NE

Abstract: Graph drawing addresses the problem of finding a layout of a graph that satisfies given aesthetic and understandability objectives. The most important objective in graph drawing is minimization of the number of crossings in the drawing, as the aesthetics and readability of graph drawings depend on the number of edge crossings. VLSI layouts with fewer crossings are more easily realizable and consequently cheaper. A straight-line drawing of a planar graph G of n vertices is a drawing of G such that each edge is drawn as a straight-line segment without edge crossings. However, a problem with current graph layout methods which are capable of producing satisfactory results for a wide range of graphs is that they often put an extremely high demand on computational resources. This paper introduces a new layout method, which nicely draws internally convex of planar graph that consumes only little computational resources and does not need any heavy duty preprocessing. Here, we use two methods: The first is self organizing map known from unsupervised neural networks which is known as (SOM) and the second method is Inverse Self Organized Map (ISOM).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.