Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Distributed Minimum Cut Approximation Scheme (1401.5316v1)

Published 21 Jan 2014 in cs.DS and cs.DC

Abstract: In this paper, we study the problem of approximating the minimum cut in a distributed message-passing model, the CONGEST model. The minimum cut problem has been well-studied in the context of centralized algorithms. However, there were no known non-trivial algorithms in the distributed model until the recent work of Ghaffari and Kuhn. They gave algorithms for finding cuts of size $O(\epsilon{-1}\lambda)$ and $(2+\epsilon)\lambda$ in $O(D)+\tilde{O}(n{1/2+\epsilon})$ rounds and $\tilde{O}(D+\sqrt{n})$ rounds respectively, where $\lambda$ is the size of the minimum cut. This matches the lower bound they provided up to a polylogarithmic factor. Yet, no scheme that achieves $(1+\epsilon)$-approximation ratio is known. We give a distributed algorithm that finds a cut of size $(1+\epsilon)\lambda$ in $\tilde{O}(D+\sqrt{n})$ time, which is optimal up to polylogarithmic factors.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.