Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Computing Approximate Nash Equilibria and Robust Best-Responses Using Sampling (1401.4591v1)

Published 18 Jan 2014 in cs.GT

Abstract: This article discusses two contributions to decision-making in complex partially observable stochastic games. First, we apply two state-of-the-art search techniques that use Monte-Carlo sampling to the task of approximating a Nash-Equilibrium (NE) in such games, namely Monte-Carlo Tree Search (MCTS) and Monte-Carlo Counterfactual Regret Minimization (MCCFR). MCTS has been proven to approximate a NE in perfect-information games. We show that the algorithm quickly finds a reasonably strong strategy (but not a NE) in a complex imperfect information game, i.e. Poker. MCCFR on the other hand has theoretical NE convergence guarantees in such a game. We apply MCCFR for the first time in Poker. Based on our experiments, we may conclude that MCTS is a valid approach if one wants to learn reasonably strong strategies fast, whereas MCCFR is the better choice if the quality of the strategy is most important. Our second contribution relates to the observation that a NE is not a best response against players that are not playing a NE. We present Monte-Carlo Restricted Nash Response (MCRNR), a sample-based algorithm for the computation of restricted Nash strategies. These are robust best-response strategies that (1) exploit non-NE opponents more than playing a NE and (2) are not (overly) exploitable by other strategies. We combine the advantages of two state-of-the-art algorithms, i.e. MCCFR and Restricted Nash Response (RNR). MCRNR samples only relevant parts of the game tree. We show that MCRNR learns quicker than standard RNR in smaller games. Also we show in Poker that MCRNR learns robust best-response strategies fast, and that these strategies exploit opponents more than playing a NE does.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube