Papers
Topics
Authors
Recent
2000 character limit reached

Super-Resolution Compressed Sensing: An Iterative Reweighted Algorithm for Joint Parameter Learning and Sparse Signal Recovery (1401.4312v1)

Published 17 Jan 2014 in cs.IT and math.IT

Abstract: In many practical applications such as direction-of-arrival (DOA) estimation and line spectral estimation, the sparsifying dictionary is usually characterized by a set of unknown parameters in a continuous domain. To apply the conventional compressed sensing to such applications, the continuous parameter space has to be discretized to a finite set of grid points. Discretization, however, incurs errors and leads to deteriorated recovery performance. To address this issue, we propose an iterative reweighted method which jointly estimates the unknown parameters and the sparse signals. Specifically, the proposed algorithm is developed by iteratively decreasing a surrogate function majorizing a given objective function, which results in a gradual and interweaved iterative process to refine the unknown parameters and the sparse signal. Numerical results show that the algorithm provides superior performance in resolving closely-spaced frequency components.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.