Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-Resolution Compressed Sensing: An Iterative Reweighted Algorithm for Joint Parameter Learning and Sparse Signal Recovery (1401.4312v1)

Published 17 Jan 2014 in cs.IT and math.IT

Abstract: In many practical applications such as direction-of-arrival (DOA) estimation and line spectral estimation, the sparsifying dictionary is usually characterized by a set of unknown parameters in a continuous domain. To apply the conventional compressed sensing to such applications, the continuous parameter space has to be discretized to a finite set of grid points. Discretization, however, incurs errors and leads to deteriorated recovery performance. To address this issue, we propose an iterative reweighted method which jointly estimates the unknown parameters and the sparse signals. Specifically, the proposed algorithm is developed by iteratively decreasing a surrogate function majorizing a given objective function, which results in a gradual and interweaved iterative process to refine the unknown parameters and the sparse signal. Numerical results show that the algorithm provides superior performance in resolving closely-spaced frequency components.

Citations (74)

Summary

We haven't generated a summary for this paper yet.