SUPER: Sparse signals with Unknown Phases Efficiently Recovered (1401.4269v3)
Abstract: Suppose ${\bf x}$ is any exactly $k$-sparse vector in $\mathbb{C}{n}$. We present a class of phase measurement matrix $A$ in $\mathbb{C}{m\times n}$, and a corresponding algorithm, called SUPER, that can resolve ${\bf x}$ up to a global phase from intensity measurements $|A{\bf x}|$ with high probability over $A$. Here $|A{\bf x}|$ is a vector of component-wise magnitudes of $A{\bf x}$. The SUPER algorithm is the first to simultaneously have the following properties: (a) it requires only ${\cal O}(k)$ (order-optimal) measurements, (b) the computational complexity of decoding is ${\cal O}(k\log k)$ (near order-optimal) arithmetic operations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.