Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SUPER: Sparse signals with Unknown Phases Efficiently Recovered (1401.4269v3)

Published 17 Jan 2014 in cs.IT and math.IT

Abstract: Suppose ${\bf x}$ is any exactly $k$-sparse vector in $\mathbb{C}{n}$. We present a class of phase measurement matrix $A$ in $\mathbb{C}{m\times n}$, and a corresponding algorithm, called SUPER, that can resolve ${\bf x}$ up to a global phase from intensity measurements $|A{\bf x}|$ with high probability over $A$. Here $|A{\bf x}|$ is a vector of component-wise magnitudes of $A{\bf x}$. The SUPER algorithm is the first to simultaneously have the following properties: (a) it requires only ${\cal O}(k)$ (order-optimal) measurements, (b) the computational complexity of decoding is ${\cal O}(k\log k)$ (near order-optimal) arithmetic operations.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.