Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Distributed Remote Vector Gaussian Source Coding for Wireless Acoustic Sensor Networks (1401.3945v1)

Published 16 Jan 2014 in cs.IT and math.IT

Abstract: In this paper, we consider the problem of remote vector Gaussian source coding for a wireless acoustic sensor network. Each node receives messages from multiple nodes in the network and decodes these messages using its own measurement of the sound field as side information. The node's measurement and the estimates of the source resulting from decoding the received messages are then jointly encoded and transmitted to a neighboring node in the network. We show that for this distributed source coding scenario, one can encode a so-called conditional sufficient statistic of the sources instead of jointly encoding multiple sources. We focus on the case where node measurements are in form of noisy linearly mixed combinations of the sources and the acoustic channel mixing matrices are invertible. For this problem, we derive the rate-distortion function for vector Gaussian sources and under covariance distortion constraints.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.