Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Active Learning Approach for Jointly Estimating Worker Performance and Annotation Reliability with Crowdsourced Data (1401.3836v1)

Published 16 Jan 2014 in cs.LG and cs.HC

Abstract: Crowdsourcing platforms offer a practical solution to the problem of affordably annotating large datasets for training supervised classifiers. Unfortunately, poor worker performance frequently threatens to compromise annotation reliability, and requesting multiple labels for every instance can lead to large cost increases without guaranteeing good results. Minimizing the required training samples using an active learning selection procedure reduces the labeling requirement but can jeopardize classifier training by focusing on erroneous annotations. This paper presents an active learning approach in which worker performance, task difficulty, and annotation reliability are jointly estimated and used to compute the risk function guiding the sample selection procedure. We demonstrate that the proposed approach, which employs active learning with Bayesian networks, significantly improves training accuracy and correctly ranks the expertise of unknown labelers in the presence of annotation noise.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.