Adaptive Link Selection Strategies for Distributed Estimation in Wireless Sensor Networks (1401.3785v1)
Abstract: In this work, we propose adaptive link selection strategies for distributed estimation in diffusion-type wireless networks. We develop an exhaustive search-based link selection algorithm and a sparsity-inspired link selection algorithm that can exploit the topology of networks with poor-quality links. In the exhaustive search-based algorithm, we choose the set of neighbors that results in the smallest excess mean square error (EMSE) for a specific node. In the sparsity-inspired link selection algorithm, a convex regularization is introduced to devise a sparsity-inspired link selection algorithm. The proposed algorithms have the ability to equip diffusion-type wireless networks and to significantly improve their performance. Simulation results illustrate that the proposed algorithms have lower EMSE values, a better convergence rate and significantly improve the network performance when compared with existing methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.