Transductive Rademacher Complexity and its Applications (1401.3441v1)
Abstract: We develop a technique for deriving data-dependent error bounds for transductive learning algorithms based on transductive Rademacher complexity. Our technique is based on a novel general error bound for transduction in terms of transductive Rademacher complexity, together with a novel bounding technique for Rademacher averages for particular algorithms, in terms of their "unlabeled-labeled" representation. This technique is relevant to many advanced graph-based transductive algorithms and we demonstrate its effectiveness by deriving error bounds to three well known algorithms. Finally, we present a new PAC-Bayesian bound for mixtures of transductive algorithms based on our Rademacher bounds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.