Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Online Markov decision processes with Kullback-Leibler control cost (1401.3198v1)

Published 14 Jan 2014 in math.OC, cs.LG, and cs.SY

Abstract: This paper considers an online (real-time) control problem that involves an agent performing a discrete-time random walk over a finite state space. The agent's action at each time step is to specify the probability distribution for the next state given the current state. Following the set-up of Todorov, the state-action cost at each time step is a sum of a state cost and a control cost given by the Kullback-Leibler (KL) divergence between the agent's next-state distribution and that determined by some fixed passive dynamics. The online aspect of the problem is due to the fact that the state cost functions are generated by a dynamic environment, and the agent learns the current state cost only after selecting an action. An explicit construction of a computationally efficient strategy with small regret (i.e., expected difference between its actual total cost and the smallest cost attainable using noncausal knowledge of the state costs) under mild regularity conditions is presented, along with a demonstration of the performance of the proposed strategy on a simulated target tracking problem. A number of new results on Markov decision processes with KL control cost are also obtained.

Citations (56)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.