Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Linear-Time Compression of Bounded-Genus Graphs into Information-Theoretically Optimal Number of Bits (1401.2538v1)

Published 11 Jan 2014 in cs.DS

Abstract: A $\textit{compression scheme}$ $A$ for a class $\mathbb{G}$ of graphs consists of an encoding algorithm $\textit{Encode}_A$ that computes a binary string $\textit{Code}_A(G)$ for any given graph $G$ in $\mathbb{G}$ and a decoding algorithm $\textit{Decode}_A$ that recovers $G$ from $\textit{Code}_A(G)$. A compression scheme $A$ for $\mathbb{G}$ is $\textit{optimal}$ if both $\textit{Encode}_A$ and $\textit{Decode}_A$ run in linear time and the number of bits of $\textit{Code}_A(G)$ for any $n$-node graph $G$ in $\mathbb{G}$ is information-theoretically optimal to within lower-order terms. Trees and plane triangulations were the only known nontrivial graph classes that admit optimal compression schemes. Based upon Goodrich's separator decomposition for planar graphs and Djidjev and Venkatesan's planarizers for bounded-genus graphs, we give an optimal compression scheme for any hereditary (i.e., closed under taking subgraphs) class $\mathbb{G}$ under the premise that any $n$-node graph of $\mathbb{G}$ to be encoded comes with a genus-$o(\frac{n}{\log2 n})$ embedding. By Mohar's linear-time algorithm that embeds a bounded-genus graph on a genus-$O(1)$ surface, our result implies that any hereditary class of genus-$O(1)$ graphs admits an optimal compression scheme. For instance, our result yields the first-known optimal compression schemes for planar graphs, plane graphs, graphs embedded on genus-$1$ surfaces, graphs with genus $2$ or less, $3$-colorable directed plane graphs, $4$-outerplanar graphs, and forests with degree at most $5$. For non-hereditary graph classes, we also give a methodology for obtaining optimal compression schemes. From this methodology, we give the first known optimal compression schemes for triangulations of genus-$O(1)$ surfaces and floorplans.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)