Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Quantitative methods for Phylogenetic Inference in Historical Linguistics: An experimental case study of South Central Dravidian (1401.0708v1)

Published 3 Jan 2014 in cs.CL and cs.AI

Abstract: In this paper we examine the usefulness of two classes of algorithms Distance Methods, Discrete Character Methods (Felsenstein and Felsenstein 2003) widely used in genetics, for predicting the family relationships among a set of related languages and therefore, diachronic language change. Applying these algorithms to the data on the numbers of shared cognates- with-change and changed as well as unchanged cognates for a group of six languages belonging to a Dravidian language sub-family given in Krishnamurti et al. (1983), we observed that the resultant phylogenetic trees are largely in agreement with the linguistic family tree constructed using the comparative method of reconstruction with only a few minor differences. Furthermore, we studied these minor differences and found that they were cases of genuine ambiguity even for a well-trained historical linguist. We evaluated the trees obtained through our experiments using a well-defined criterion and report the results here. We finally conclude that quantitative methods like the ones we examined are quite useful in predicting family relationships among languages. In addition, we conclude that a modest degree of confidence attached to the intuition that there could indeed exist a parallelism between the processes of linguistic and genetic change is not totally misplaced.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube