Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Martingale Approach and Time-Consistent Sampling-based Algorithms for Risk Management in Stochastic Optimal Control (1312.7602v2)

Published 29 Dec 2013 in cs.SY, cs.RO, math.DS, and math.PR

Abstract: In this paper, we consider a class of stochastic optimal control problems with risk constraints that are expressed as bounded probabilities of failure for particular initial states. We present here a martingale approach that diffuses a risk constraint into a martingale to construct time-consistent control policies. The martingale stands for the level of risk tolerance over time. By augmenting the system dynamics with the controlled martingale, the original risk-constrained problem is transformed into a stochastic target problem. We extend the incremental Markov Decision Process (iMDP) algorithm to approximate arbitrarily well an optimal feedback policy of the original problem by sampling in the augmented state space and computing proper boundary conditions for the reformulated problem. We show that the algorithm is both probabilistically sound and asymptotically optimal. The performance of the proposed algorithm is demonstrated on motion planning and control problems subject to bounded probability of collision in uncertain cluttered environments.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.