Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Probabilistic Computability and Choice (1312.7305v3)

Published 27 Dec 2013 in math.LO, cs.CC, and cs.LO

Abstract: We study the computational power of randomized computations on infinite objects, such as real numbers. In particular, we introduce the concept of a Las Vegas computable multi-valued function, which is a function that can be computed on a probabilistic Turing machine that receives a random binary sequence as auxiliary input. The machine can take advantage of this random sequence, but it always has to produce a correct result or to stop the computation after finite time if the random advice is not successful. With positive probability the random advice has to be successful. We characterize the class of Las Vegas computable functions in the Weihrauch lattice with the help of probabilistic choice principles and Weak Weak K\H{o}nig's Lemma. Among other things we prove an Independent Choice Theorem that implies that Las Vegas computable functions are closed under composition. In a case study we show that Nash equilibria are Las Vegas computable, while zeros of continuous functions with sign changes cannot be computed on Las Vegas machines. However, we show that the latter problem admits randomized algorithms with weaker failure recognition mechanisms. The last mentioned results can be interpreted such that the Intermediate Value Theorem is reducible to the jump of Weak Weak K\H{o}nig's Lemma, but not to Weak Weak K\H{o}nig's Lemma itself. These examples also demonstrate that Las Vegas computable functions form a proper superclass of the class of computable functions and a proper subclass of the class of non-deterministically computable functions. We also study the impact of specific lower bounds on the success probabilities, which leads to a strict hierarchy of classes. In particular, the classical technique of probability amplification fails for computations on infinite objects. We also investigate the dependency on the underlying probability space.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube