Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Steiner Tree with Deletions (1312.7296v1)

Published 27 Dec 2013 in cs.DS

Abstract: In the online Steiner tree problem, the input is a set of vertices that appear one-by-one, and we have to maintain a Steiner tree on the current set of vertices. The cost of the tree is the total length of edges in the tree, and we want this cost to be close to the cost of the optimal Steiner tree at all points in time. If we are allowed to only add edges, a tight bound of $\Theta(\log n)$ on the competitiveness is known. Recently it was shown that if we can add one new edge and make one edge swap upon every vertex arrival, we can maintain a constant-competitive tree online. But what if the set of vertices sees both additions and deletions? Again, we would like to obtain a low-cost Steiner tree with as few edge changes as possible. The original paper of Imase and Waxman had also considered this model, and it gave a greedy algorithm that maintained a constant-competitive tree online, and made at most $O(n{3/2})$ edge changes for the first $n$ requests. In this paper give the following two results. Our first result is an online algorithm that maintains a Steiner tree only under deletions: we start off with a set of vertices, and at each time one of the vertices is removed from this set: our Steiner tree no longer has to span this vertex. We give an algorithm that changes only a constant number of edges upon each request, and maintains a constant-competitive tree at all times. Our algorithm uses the primal-dual framework and a global charging argument to carefully make these constant number of changes. We then study the natural greedy algorithm proposed by Imase and Waxman that maintains a constant-competitive Steiner tree in the fully-dynamic model (where each request either adds or deletes a vertex). Our second result shows that this algorithm makes only a constant number of changes per request in an amortized sense.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.