Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Quadratically Convergent Algorithm for Structured Low-Rank Approximation (1312.7279v2)

Published 27 Dec 2013 in cs.NA, cs.SC, and math.NA

Abstract: Structured Low-Rank Approximation is a problem arising in a wide range of applications in Numerical Analysis and Engineering Sciences. Given an input matrix $M$, the goal is to compute a matrix $M'$ of given rank $r$ in a linear or affine subspace $E$ of matrices (usually encoding a specific structure) such that the Frobenius distance $\lVert M-M'\rVert$ is small. We propose a Newton-like iteration for solving this problem, whose main feature is that it converges locally quadratically to such a matrix under mild transversality assumptions between the manifold of matrices of rank $r$ and the linear/affine subspace $E$. We also show that the distance between the limit of the iteration and the optimal solution of the problem is quadratic in the distance between the input matrix and the manifold of rank $r$ matrices in $E$. To illustrate the applicability of this algorithm, we propose a Maple implementation and give experimental results for several applicative problems that can be modeled by Structured Low-Rank Approximation: univariate approximate GCDs (Sylvester matrices), low-rank Matrix completion (coordinate spaces) and denoising procedures (Hankel matrices). Experimental results give evidence that this all-purpose algorithm is competitive with state-of-the-art numerical methods dedicated to these problems.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube