Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Piecewise regression mixture for simultaneous functional data clustering and optimal segmentation (1312.6974v2)

Published 25 Dec 2013 in stat.ME, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: This paper introduces a novel mixture model-based approach for simultaneous clustering and optimal segmentation of functional data which are curves presenting regime changes. The proposed model consists in a finite mixture of piecewise polynomial regression models. Each piecewise polynomial regression model is associated with a cluster, and within each cluster, each piecewise polynomial component is associated with a regime (i.e., a segment). We derive two approaches for learning the model parameters. The former is an estimation approach and consists in maximizing the observed-data likelihood via a dedicated expectation-maximization (EM) algorithm. A fuzzy partition of the curves in K clusters is then obtained at convergence by maximizing the posterior cluster probabilities. The latter however is a classification approach and optimizes a specific classification likelihood criterion through a dedicated classification expectation-maximization (CEM) algorithm. The optimal curve segmentation is performed by using dynamic programming. In the classification approach, both the curve clustering and the optimal segmentation are performed simultaneously as the CEM learning proceeds. We show that the classification approach is the probabilistic version that generalizes the deterministic K-means-like algorithm proposed in H\'ebrail et al. (2010). The proposed approach is evaluated using simulated curves and real-world curves. Comparisons with alternatives including regression mixture models and the K-means like algorithm for piecewise regression demonstrate the effectiveness of the proposed approach.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)