Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bi-Factor Approximation Algorithms for Hard Capacitated $k$-Median Problems (1312.6550v3)

Published 23 Dec 2013 in cs.DS

Abstract: The $k$-Facility Location problem is a generalization of the classical problems $k$-Median and Facility Location. The goal is to select a subset of at most $k$ facilities that minimizes the total cost of opened facilities and established connections between clients and opened facilities. We consider the hard-capacitated version of the problem, where a single facility may only serve a limited number of clients and creating multiple copies of a facility is not allowed. We construct approximation algorithms slightly violating the capacities based on rounding a fractional solution to the standard LP. It is well known that the standard LP (even in the case of uniform capacities and opening costs) has unbounded integrality gap if we only allow violating capacities by a factor smaller than $2$, or if we only allow violating the number of facilities by a factor smaller than $2$. In this paper, we present the first constant-factor approximation algorithms for the hard-capacitated variants of the problem. For uniform capacities, we obtain a $(2+\varepsilon)$-capacity violating algorithm with approximation ratio $O(1/\varepsilon2)$; our result has not yet been improved. Then, for non-uniform capacities, we consider the case of $k$-Median, which is equivalent to $k$-Facility Location with uniform opening cost of the facilities. Here, we obtain a $(3+\varepsilon)$-capacity violating algorithm with approximation ratio $O(1/\varepsilon)$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.