Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Output-Sensitive Tools for Range Searching in Higher Dimensions (1312.6305v1)

Published 21 Dec 2013 in cs.CG

Abstract: Let $P$ be a set of $n$ points in ${\mathbb R}{d}$. A point $p \in P$ is $k$\emph{-shallow} if it lies in a halfspace which contains at most $k$ points of $P$ (including $p$). We show that if all points of $P$ are $k$-shallow, then $P$ can be partitioned into $\Theta(n/k)$ subsets, so that any hyperplane crosses at most $O((n/k){1-1/(d-1)} \log{2/(d-1)}(n/k))$ subsets. Given such a partition, we can apply the standard construction of a spanning tree with small crossing number within each subset, to obtain a spanning tree for the point set $P$, with crossing number $O(n{1-1/(d-1)}k{1/d(d-1)} \log{2/(d-1)}(n/k))$. This allows us to extend the construction of Har-Peled and Sharir \cite{hs11} to three and higher dimensions, to obtain, for any set of $n$ points in ${\mathbb R}{d}$ (without the shallowness assumption), a spanning tree $T$ with {\em small relative crossing number}. That is, any hyperplane which contains $w \leq n/2$ points of $P$ on one side, crosses $O(n{1-1/(d-1)}w{1/d(d-1)} \log{2/(d-1)}(n/w))$ edges of $T$. Using a similar mechanism, we also obtain a data structure for halfspace range counting, which uses $O(n \log \log n)$ space (and somewhat higher preprocessing cost), and answers a query in time $O(n{1-1/(d-1)}k{1/d(d-1)} (\log (n/k)){O(1)})$, where $k$ is the output size.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)