Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

A Comprehensive Analysis of Polyhedral Lift-and-Project Methods (1312.5972v3)

Published 20 Dec 2013 in math.CO, cs.CC, cs.DS, and math.OC

Abstract: We consider lift-and-project methods for combinatorial optimization problems and focus mostly on those lift-and-project methods which generate polyhedral relaxations of the convex hull of integer solutions. We introduce many new variants of Sherali--Adams and Bienstock--Zuckerberg operators. These new operators fill the spectrum of polyhedral lift-and-project operators in a way which makes all of them more transparent, easier to relate to each other, and easier to analyze. We provide new techniques to analyze the worst-case performances as well as relative strengths of these operators in a unified way. In particular, using the new techniques and a result of Mathieu and Sinclair from 2009, we prove that the polyhedral Bienstock--Zuckerberg operator requires at least $\sqrt{2n}- \frac{3}{2}$ iterations to compute the matching polytope of the $(2n+1)$-clique. We further prove that the operator requires approximately $\frac{n}{2}$ iterations to reach the stable set polytope of the $n$-clique, if we start with the fractional stable set polytope. Lastly, we show that some of the worst-case instances for the positive semidefinite Lov\'asz--Schrijver lift-and-project operator are also bad instances for the strongest variants of the Sherali--Adams operator with positive semidefinite strengthenings, and discuss some consequences for integrality gaps of convex relaxations.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube