Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generic Deep Networks with Wavelet Scattering (1312.5940v3)

Published 20 Dec 2013 in cs.CV

Abstract: We introduce a two-layer wavelet scattering network, for object classification. This scattering transform computes a spatial wavelet transform on the first layer and a new joint wavelet transform along spatial, angular and scale variables in the second layer. Numerical experiments demonstrate that this two layer convolution network, which involves no learning and no max pooling, performs efficiently on complex image data sets such as CalTech, with structural objects variability and clutter. It opens the possibility to simplify deep neural network learning by initializing the first layers with wavelet filters.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.