Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Long Time No See: The Probability of Reusing Tags as a Function of Frequency and Recency (1312.5111v1)

Published 18 Dec 2013 in cs.IR

Abstract: In this paper, we introduce a tag recommendation algorithm that mimics the way humans draw on items in their long-term memory. This approach uses the frequency and recency of previous tag assignments to estimate the probability of reusing a particular tag. Using three real-world folksonomies gathered from bookmarks in BibSonomy, CiteULike and Flickr, we show how adding a time-dependent component outperforms conventional "most popular tags" approaches and another existing and very effective but less theory-driven, time-dependent recommendation mechanism. By combining our approach with a simple resource-specific frequency analysis, our algorithm outperforms other well-established algorithms, such as FolkRank, Pairwise Interaction Tensor Factorization and Collaborative Filtering. We conclude that our approach provides an accurate and computationally efficient model of a user's temporal tagging behavior. We show how effective principles for information retrieval can be designed and implemented if human memory processes are taken into account.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.