Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Comparative analysis of evolutionary algorithms for image enhancement (1312.5045v1)

Published 18 Dec 2013 in cs.CV and cs.NE

Abstract: Evolutionary algorithms are metaheuristic techniques that derive inspiration from the natural process of evolution. They can efficiently solve (generate acceptable quality of solution in reasonable time) complex optimization (NP-Hard) problems. In this paper, automatic image enhancement is considered as an optimization problem and three evolutionary algorithms (Genetic Algorithm, Differential Evolution and Self Organizing Migration Algorithm) are employed to search for an optimum solution. They are used to find an optimum parameter set for an image enhancement transfer function. The aim is to maximize a fitness criterion which is a measure of image contrast and the visibility of details in the enhanced image. The enhancement results obtained using all three evolutionary algorithms are compared amongst themselves and also with the output of histogram equalization method.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.