Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Rounding Lasserre SDPs using column selection and spectrum-based approximation schemes for graph partitioning and Quadratic IPs (1312.3024v1)

Published 11 Dec 2013 in cs.DS and cs.CC

Abstract: We present an approximation scheme for minimizing certain Quadratic Integer Programming problems with positive semidefinite objective functions and global linear constraints. This framework includes well known graph problems such as Minimum graph bisection, Edge expansion, Sparsest Cut, and Small Set expansion, as well as the Unique Games problem. These problems are notorious for the existence of huge gaps between the known algorithmic results and NP-hardness results. Our algorithm is based on rounding semidefinite programs from the Lasserre hierarchy, and the analysis uses bounds for low-rank approximations of a matrix in Frobenius norm using columns of the matrix. For all the above graph problems, we give an algorithm running in time $n{O(r/\epsilon2)}$ with approximation ratio $\frac{1+\epsilon}{\min{1,\lambda_r}}$, where $\lambda_r$ is the $r$'th smallest eigenvalue of the normalized graph Laplacian $\mathcal{L}$. In the case of graph bisection and small set expansion, the number of vertices in the cut is within lower-order terms of the stipulated bound. Our results imply $(1+O(\epsilon))$ factor approximation in time $n{O(r\ast/\epsilon2)}$ where is the number of eigenvalues of $\mathcal{L}$ smaller than $1-\epsilon$ (for variants of sparsest cut, $\lambda_{r\ast} \ge \mathrm{OPT}/\epsilon$ also suffices, and as $\mathrm{OPT}$ is usually $o(1)$ on interesting instances of these problems, this requirement on $r\ast$ is typically weaker). For Unique Games, we give a factor $(1+\frac{2+\epsilon}{\lambda_r})$ approximation for minimizing the number of unsatisfied constraints in $n{O(r/\epsilon)}$ time, improving upon an earlier bound for solving Unique Games on expanders. We also give an algorithm for independent sets in graphs that performs well when the Laplacian does not have too many eigenvalues bigger than $1+o(1)$.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube