Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-Task Classification Hypothesis Space with Improved Generalization Bounds

Published 9 Dec 2013 in cs.LG | (1312.2606v1)

Abstract: This paper presents a RKHS, in general, of vector-valued functions intended to be used as hypothesis space for multi-task classification. It extends similar hypothesis spaces that have previously considered in the literature. Assuming this space, an improved Empirical Rademacher Complexity-based generalization bound is derived. The analysis is itself extended to an MKL setting. The connection between the proposed hypothesis space and a Group-Lasso type regularizer is discussed. Finally, experimental results, with some SVM-based Multi-Task Learning problems, underline the quality of the derived bounds and validate the paper's analysis.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.