Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Budgeted Influence Maximization for Multiple Products (1312.2164v2)

Published 8 Dec 2013 in cs.LG, cs.SI, and stat.ML

Abstract: The typical algorithmic problem in viral marketing aims to identify a set of influential users in a social network, who, when convinced to adopt a product, shall influence other users in the network and trigger a large cascade of adoptions. However, the host (the owner of an online social platform) often faces more constraints than a single product, endless user attentions, unlimited budget and unbounded time; in reality, multiple products need to be advertised, each user can tolerate only a small number of recommendations, influencing user has a cost and advertisers have only limited budgets, and the adoptions need to be maximized within a short time window. Given theses myriads of user, monetary, and timing constraints, it is extremely challenging for the host to design principled and efficient viral market algorithms with provable guarantees. In this paper, we provide a novel solution by formulating the problem as a submodular maximization in a continuous-time diffusion model under an intersection of a matroid and multiple knapsack constraints. We also propose an adaptive threshold greedy algorithm which can be faster than the traditional greedy algorithm with lazy evaluation, and scalable to networks with million of nodes. Furthermore, our mathematical formulation allows us to prove that the algorithm can achieve an approximation factor of $k_a/(2+2 k)$ when $k_a$ out of the $k$ knapsack constraints are active, which also improves over previous guarantees from combinatorial optimization literature. In the case when influencing each user has uniform cost, the approximation becomes even better to a factor of $1/3$. Extensive synthetic and real world experiments demonstrate that our budgeted influence maximization algorithm achieves the-state-of-the-art in terms of both effectiveness and scalability, often beating the next best by significant margins.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.