Papers
Topics
Authors
Recent
2000 character limit reached

Implementation of CRISP Methodology for ERP Systems (1312.2065v1)

Published 7 Dec 2013 in cs.DB

Abstract: ERP systems contain huge amounts of data related to the actual execution of business processes. These systems have a particular way of recording activities which results in an unclear display of business processes in event logs. Several works have been conducted on ERP systems, most of them focusing on the development of new algorithms for the automatic discovery of business processes. We focused on addressing issues like, how can organizations with ERP systems apply process mining for analyzing their business processes in order to improve them. The data handling aspect of ERP systems contrasts with those of BPMS or workflow based systems, whose systematical storage of events facilitates the application of process mining techniques. CRISP-DM has emerged as the de facto standard for developing data mining and knowledge discovery projects. Successful data mining requires three families of analytical capabilities namely reporting, classification and forecasting. A data miner uses more than one analytical method to get the best results. The objective of this paper is to improve the usability and understandability of process mining techniques, by implementing CRISP-DM methodology for their application in ERP contexts, detailed in terms of specific implementation tools and step by step coordination. Our study confirms that data discovery from ERP system improves strategic and operational decision making.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.