Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximating the Stationary Probability of a Single State in a Markov chain (1312.1986v2)

Published 6 Dec 2013 in cs.DS and cs.SI

Abstract: In this paper, we present a novel iterative Monte Carlo method for approximating the stationary probability of a single state of a positive recurrent Markov chain. We utilize the characterization that the stationary probability of a state $i$ is inversely proportional to the expected return time of a random walk beginning at $i$. Our method obtains an $\epsilon$-multiplicative close estimate with probability greater than $1 - \alpha$ using at most $\tilde{O}\left(t_{\text{mix}} \ln(1/\alpha) / \pi_i \epsilon2 \right)$ simulated random walk steps on the Markov chain across all iterations, where $t_{\text{mix}}$ is the standard mixing time and $\pi_i$ is the stationary probability. In addition, the estimate at each iteration is guaranteed to be an upper bound with high probability, and is decreasing in expectation with the iteration count, allowing us to monitor the progress of the algorithm and design effective termination criteria. We propose a termination criteria which guarantees a $\epsilon (1 + 4 \ln(2) t_{\text{mix}})$ multiplicative error performance for states with stationary probability larger than $\Delta$, while providing an additive error for states with stationary probability less than $\Delta \in (0,1)$. The algorithm along with this termination criteria uses at most $\tilde{O}\left(\frac{\ln(1/\alpha)}{\epsilon2} \min\left(\frac{t_{\text{mix}}}{\pi_i}, \frac{1}{\epsilon \Delta}\right)\right)$ simulated random walk steps, which is bounded by a constant with respect to the Markov Chain. We provide a tight analysis of our algorithm based on a locally weighted variant of the mixing time. Our results naturally extend for countably infinite state space Markov chains via Lyapunov function analysis.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.