Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Welfare Maximization and Truthfulness in Mechanism Design with Ordinal Preferences (1312.1831v2)

Published 6 Dec 2013 in cs.GT and cs.DS

Abstract: We study mechanism design problems in the {\em ordinal setting} wherein the preferences of agents are described by orderings over outcomes, as opposed to specific numerical values associated with them. This setting is relevant when agents can compare outcomes, but aren't able to evaluate precise utilities for them. Such a situation arises in diverse contexts including voting and matching markets. Our paper addresses two issues that arise in ordinal mechanism design. To design social welfare maximizing mechanisms, one needs to be able to quantitatively measure the welfare of an outcome which is not clear in the ordinal setting. Second, since the impossibility results of Gibbard and Satterthwaite~\cite{Gibbard73,Satterthwaite75} force one to move to randomized mechanisms, one needs a more nuanced notion of truthfulness. We propose {\em rank approximation} as a metric for measuring the quality of an outcome, which allows us to evaluate mechanisms based on worst-case performance, and {\em lex-truthfulness} as a notion of truthfulness for randomized ordinal mechanisms. Lex-truthfulness is stronger than notions studied in the literature, and yet flexible enough to admit a rich class of mechanisms {\em circumventing classical impossibility results}. We demonstrate the usefulness of the above notions by devising lex-truthful mechanisms achieving good rank-approximation factors, both in the general ordinal setting, as well as structured settings such as {\em (one-sided) matching markets}, and its generalizations, {\em matroid} and {\em scheduling} markets.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.