Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Curriculum Learning for Handwritten Text Line Recognition (1312.1737v1)

Published 5 Dec 2013 in cs.LG

Abstract: Recurrent Neural Networks (RNN) have recently achieved the best performance in off-line Handwriting Text Recognition. At the same time, learning RNN by gradient descent leads to slow convergence, and training times are particularly long when the training database consists of full lines of text. In this paper, we propose an easy way to accelerate stochastic gradient descent in this set-up, and in the general context of learning to recognize sequences. The principle is called Curriculum Learning, or shaping. The idea is to first learn to recognize short sequences before training on all available training sequences. Experiments on three different handwritten text databases (Rimes, IAM, OpenHaRT) show that a simple implementation of this strategy can significantly speed up the training of RNN for Text Recognition, and even significantly improve performance in some cases.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.