Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximating persistent homology for a cloud of $n$ points in a subquadratic time (1312.1494v2)

Published 5 Dec 2013 in cs.CG, cs.CV, and math.AT

Abstract: The Vietoris-Rips filtration for an $n$-point metric space is a sequence of large simplicial complexes adding a topological structure to the otherwise disconnected space. The persistent homology is a key tool in topological data analysis and studies topological features of data that persist over many scales. The fastest algorithm for computing persistent homology of a filtration has time $O(M(u)+u2\log2 u)$, where $u$ is the number of updates (additions or deletions of simplices), $M(u)=O(u{2.376})$ is the time for multiplication of $u\times u$ matrices. For a space of $n$ points given by their pairwise distances, we approximate the Vietoris-Rips filtration by a zigzag filtration consisting of $u=o(n)$ updates, which is sublinear in $n$. The constant depends on a given error of approximation and on the doubling dimension of the metric space. Then the persistent homology of this sublinear-size filtration can be computed in time $o(n2)$, which is subquadratic in $n$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.