Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Note on the Quantum Collision and Set Equality Problems (1312.1027v3)

Published 4 Dec 2013 in cs.CC and quant-ph

Abstract: The results showing a quantum query complexity of $\Theta(N{1/3})$ for the collision problem do not apply to random functions. The issues are two-fold. First, the $\Omega(N{1/3})$ lower bound only applies when the range is no larger than the domain, which precludes many of the cryptographically interesting applications. Second, most of the results in the literature only apply to $r$-to-1 functions, which are quite different from random functions. Understanding the collision problem for random functions is of great importance to cryptography, and we seek to fill the gaps of knowledge for this problem. To that end, we prove that, as expected, a quantum query complexity of $\Theta(N{1/3})$ holds for all interesting domain and range sizes. Our proofs are simple, and combine existing techniques with several novel tricks to obtain the desired results. Using our techniques, we also give an optimal $\Omega(N{1/3})$ lower bound for the set equality problem. This new lower bound can be used to improve the relationship between classical randomized query complexity and quantum query complexity for so-called permutation-symmetric functions.

Citations (132)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)