Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Truth Behind the Myth of the Folk Theorem (1312.1017v3)

Published 4 Dec 2013 in cs.GT

Abstract: We study the problem of computing an $\epsilon$-Nash equilibrium in repeated games. Earlier work by Borgs et al. [2010] suggests that this problem is intractable. We show that if we make a slight change to their model---modeling the players as polynomial-time Turing machines that maintain state ---and make some standard cryptographic hardness assumptions (the existence of public-key encryption), the problem can actually be solved in polynomial time. Our algorithm works not only for games with a finite number of players, but also for constant-degree graphical games. As Nash equilibrium is a weak solution concept for extensive form games, we additionally define and study an appropriate notion of a subgame-perfect equilibrium for computationally bounded players, and show how to efficiently find such an equilibrium in repeated games (again, making standard cryptographic hardness assumptions).

Citations (11)

Summary

We haven't generated a summary for this paper yet.