Nonlinear Dimensionality Reduction via Path-Based Isometric Mapping (1312.0803v3)
Abstract: Nonlinear dimensionality reduction methods have demonstrated top-notch performance in many pattern recognition and image classification tasks. Despite their popularity, they suffer from highly expensive time and memory requirements, which render them inapplicable to large-scale datasets. To leverage such cases we propose a new method called "Path-Based Isomap". Similar to Isomap, we exploit geodesic paths to find the low-dimensional embedding. However, instead of preserving pairwise geodesic distances, the low-dimensional embedding is computed via a path-mapping algorithm. Due to the much fewer number of paths compared to number of data points, a significant improvement in time and memory complexity without any decline in performance is achieved. The method demonstrates state-of-the-art performance on well-known synthetic and real-world datasets, as well as in the presence of noise.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.