Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Simple Bounds for Noisy Linear Inverse Problems with Exact Side Information (1312.0641v2)

Published 2 Dec 2013 in cs.IT, math.IT, math.OC, math.ST, and stat.TH

Abstract: This paper considers the linear inverse problem where we wish to estimate a structured signal $x$ from its corrupted observations. When the problem is ill-posed, it is natural to make use of a convex function $f(\cdot)$ that exploits the structure of the signal. For example, $\ell_1$ norm can be used for sparse signals. To carry out the estimation, we consider two well-known convex programs: 1) Second order cone program (SOCP), and, 2) Lasso. Assuming Gaussian measurements, we show that, if precise information about the value $f(x)$ or the $\ell_2$-norm of the noise is available, one can do a particularly good job at estimation. In particular, the reconstruction error becomes proportional to the "sparsity" of the signal rather than the ambient dimension of the noise vector. We connect our results to existing works and provide a discussion on the relation of our results to the standard least-squares problem. Our error bounds are non-asymptotic and sharp, they apply to arbitrary convex functions and do not assume any distribution on the noise.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.