Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Knowledge-Aided STAP Using Low Rank and Geometry Properties (1311.7183v1)

Published 28 Nov 2013 in cs.IT and math.IT

Abstract: This paper presents knowledge-aided space-time adaptive processing (KA-STAP) algorithms that exploit the low-rank dominant clutter and the array geometry properties (LRGP) for airborne radar applications. The core idea is to exploit the fact that the clutter subspace is only determined by the space-time steering vectors, {red}{where the Gram-Schmidt orthogonalization approach is employed to compute the clutter subspace. Specifically, for a side-looking uniformly spaced linear array, the} algorithm firstly selects a group of linearly independent space-time steering vectors using LRGP that can represent the clutter subspace. By performing the Gram-Schmidt orthogonalization procedure, the orthogonal bases of the clutter subspace are obtained, followed by two approaches to compute the STAP filter weights. To overcome the performance degradation caused by the non-ideal effects, a KA-STAP algorithm that combines the covariance matrix taper (CMT) is proposed. For practical applications, a reduced-dimension version of the proposed KA-STAP algorithm is also developed. The simulation results illustrate the effectiveness of our proposed algorithms, and show that the proposed algorithms converge rapidly and provide a SINR improvement over existing methods when using a very small number of snapshots.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.