Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multiuser Random Coding Techniques for Mismatched Decoding (1311.6635v3)

Published 26 Nov 2013 in cs.IT and math.IT

Abstract: This paper studies multiuser random coding techniques for channel coding with a given (possibly suboptimal) decoding rule. For the mismatched discrete memoryless multiple-access channel, an error exponent is obtained that is tight with respect to the ensemble average, and positive within the interior of Lapidoth's achievable rate region. This exponent proves the ensemble tightness of the exponent of Liu and Hughes in the case of maximum-likelihood decoding. An equivalent dual form of Lapidoth's achievable rate region is given, and the latter is shown to extend immediately to channels with infinite and continuous alphabets. In the setting of single-user mismatched decoding, similar analysis techniques are applied to a refined version of superposition coding, which is shown to achieve rates at least as high as standard superposition coding for any set of random-coding parameters.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube