Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Delay-Constrained Video Transmission: Quality-driven Resource Allocation and Scheduling (1311.5921v1)

Published 22 Nov 2013 in cs.IT and math.IT

Abstract: Real-time video demands quality-of-service (QoS) guarantees such as delay bounds for end-user satisfaction. Furthermore, the tolerable delay varies depending on the use case such as live streaming or two-way video conferencing. Due to the inherently stochastic nature of wireless fading channels, deterministic delay bounds are difficult to guarantee. Instead, we propose providing statistical delay guarantees using the concept of effective capacity. We consider a multiuser setup whereby different users have (possibly different) delay QoS constraints. We derive the resource allocation policy that maximizes the sum video quality and applies to any quality metric with concave rate-quality mapping. We show that the optimal operating point per user is such that the rate-distortion slope is the inverse of the supported video source rate per unit bandwidth, a key metric we refer to as the source spectral efficiency. We also solve the alternative problem of fairness-based resource allocation whereby the objective is to maximize the minimum video quality across users. Finally, we derive user admission and scheduling policies that enable selecting a maximal user subset such that all selected users can meet their statistical delay requirement. Results show that video users with differentiated QoS requirements can achieve similar video quality with vastly different resource requirements. Thus, QoS-aware scheduling and resource allocation enable supporting significantly more users under the same resource constraints.

Citations (86)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.