On Nonrigid Shape Similarity and Correspondence (1311.5595v1)
Abstract: An important operation in geometry processing is finding the correspondences between pairs of shapes. The Gromov-Hausdorff distance, a measure of dissimilarity between metric spaces, has been found to be highly useful for nonrigid shape comparison. Here, we explore the applicability of related shape similarity measures to the problem of shape correspondence, adopting spectral type distances. We propose to evaluate the spectral kernel distance, the spectral embedding distance and the novel spectral quasi-conformal distance, comparing the manifolds from different viewpoints. By matching the shapes in the spectral domain, important attributes of surface structure are being aligned. For the purpose of testing our ideas, we introduce a fully automatic framework for finding intrinsic correspondence between two shapes. The proposed method achieves state-of-the-art results on the Princeton isometric shape matching protocol applied, as usual, to the TOSCA and SCAPE benchmarks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.