Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Extended Formulations for Online Linear Bandit Optimization (1311.5022v3)

Published 20 Nov 2013 in cs.LG and cs.DS

Abstract: On-line linear optimization on combinatorial action sets (d-dimensional actions) with bandit feedback, is known to have complexity in the order of the dimension of the problem. The exponential weighted strategy achieves the best known regret bound that is of the order of $d{2}\sqrt{n}$ (where $d$ is the dimension of the problem, $n$ is the time horizon). However, such strategies are provably suboptimal or computationally inefficient. The complexity is attributed to the combinatorial structure of the action set and the dearth of efficient exploration strategies of the set. Mirror descent with entropic regularization function comes close to solving this problem by enforcing a meticulous projection of weights with an inherent boundary condition. Entropic regularization in mirror descent is the only known way of achieving a logarithmic dependence on the dimension. Here, we argue otherwise and recover the original intuition of exponential weighting by borrowing a technique from discrete optimization and approximation algorithms called `extended formulation'. Such formulations appeal to the underlying geometry of the set with a guaranteed logarithmic dependence on the dimension underpinned by an information theoretic entropic analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.