Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A New Perspective for Hoare's Logic and Peano's Arithmetic (1311.4617v1)

Published 19 Nov 2013 in cs.LO

Abstract: Hoare's logic is an axiomatic system of proving programs correct, which has been extended to be a separation logic to reason about mutable heap structure. We develop the most fundamental logical structure of strongest postcondition of Hoare's logic in Peano's arithmetic $PA$. Let $p\in L$ and $S$ be any while-program. The arithmetical definability of $\textbf{N}$-computable function $f_S{\textbf{N}}$ leads to separate $S$ from $SP(p,S)$, which defines the strongest postcondition of $p$ and $S$ over $\textbf{N}$, achieving an equivalent but more meaningful form in $PA$. From the reduction of Hoare's logic to PA, together with well-defined underlying semantics, it follows that Hoare's logic is sound and complete relative to the theory of $PA$, which is different from the relative completeness in the sense of Cook. Finally, we discuss two ways to extend computability from the standard structure to nonstandard models of $PA$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.