Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming (1311.4563v1)

Published 18 Nov 2013 in cs.DS

Abstract: In the incremental knapsack problem ($\IK$), we are given a knapsack whose capacity grows weakly as a function of time. There is a time horizon of $T$ periods and the capacity of the knapsack is $B_t$ in period $t$ for $t = 1, \ldots, T$. We are also given a set $S$ of $N$ items to be placed in the knapsack. Item $i$ has a value of $v_i$ and a weight of $w_i$ that is independent of the time period. At any time period $t$, the sum of the weights of the items in the knapsack cannot exceed the knapsack capacity $B_t$. Moreover, once an item is placed in the knapsack, it cannot be removed from the knapsack at a later time period. We seek to maximize the sum of (discounted) knapsack values over time subject to the capacity constraints. We first give a constant factor approximation algorithm for $\IK$, under mild restrictions on the growth rate of $B_t$ (the constant factor depends on the growth rate). We then give a PTAS for $\IIK$, the special case of $\IK$ with no discounting, when $T = O(\sqrt{\log N})$.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.