Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sound and Precise Malware Analysis for Android via Pushdown Reachability and Entry-Point Saturation (1311.4201v1)

Published 17 Nov 2013 in cs.PL and cs.CR

Abstract: We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the "maliciousness" of a behavior. To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Auto- mated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a ver- sion of Anadroid that uses traditional (finite-state-machine-based) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus machine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.